

The Solar Wind as an Astrophysical Laboratory: A Review of Pickup Ions

Dr. Susan Lepri
The University of Michigan
Department of Atmospheric,
Oceanic, and Space Sciences

The Heliosphere

- Close to the Sun nearly all ions are of solar origin
- Further out in heliosphere, ions of other origins start to play larger role and mix in with solar wind
- At the terminations shock, non-solar ions account for 10% of the population
- Sources of non-solar ions include
 - Interstellar gas and grains
 - Interplanetary grains
 - Local sources: comets, planets, asteroids
- Non-solar ions start as neutral atoms which become ionized and are "picked up" by the solar wind

Detecting lons in the Heliosphere

- Interstellar hydrogen originally observed in Lyalpha background maps (Bertaux and Blamont, 1971; Thomas and Krasse, 1971)
- Solar Wind Ion Composition Spectrometers (SWICS) on Ulysses provided numerous direct measurements of interstellar pickup ions (PUIs)
- Ion mass spectrometers allow separation and identification of solar wind ions and PUIs, e.g.,
 - ⁴He+ at 1AU (Mobius et al. 1985)
 - H+ (Gloeckler et al., 1993)
 - 3He++ (Gloeckler and Geiss, 1996)
 - 4He++ (Gloeckler et al. 2000a)
 - Heavier PUIs (Geiss et al., 1994, 1996)

- Sensor counts particles as a function of energy per charge (velocity) and total energy, uses time of flight to obtain
 - Mass, mass per charge, and velocity
- Obtain velocity distribution functions for various ions (1-60 amu)
 Collimator Deflection Post- Time-of Energy
- Identifies over 40 ions: H, He, C, (N), O, (S), Si, Mg, Fe
- Also ACE/SWICS at 1AU

In undisturbed solar wind conditions, measure two distinct ion velocity distributions in the heliosphere

- Solar wind ions
 - narrow mach angle; dominate the spectrum
- PUIs from non-solar sources
 - less abundant and have a broad suprathermal velocity distribution function
 - $w = v_{ion}/v_{sw}$ in spacecraft reference frame,
 - $-\mathbf{w} = (\mathbf{v_{ion}} \mathbf{v_{ion}})/\mathbf{v_{sw}}$, in solar wind reference frame

Ions from Solar Sources

RESITY OF A FORD OF THE CANADA STATE OF THE CA

- Solar corona is ~ 106 K
- High charge state ions are created in the corona, including He2+, O6+, Fe10+, C5+, etc.
- These ions "freeze-in" within 3 4 solar radii and are carried out by solar wind
- Charge states persist throughout the heliosphere

VON STEIGER ET AL.: SOLAR WIND COMPOSITION

Table 1. Abundance Ratios Relative to Oxygen Obtained With Ulysses/SWICS During the Four ∼300-Day Periods Defined in Plate 1^a

	FIP	"Max"	"South"	"North"	"Min"	Phot.
He	24.59	95.9 ± 35.1	72.7 ± 7.9	73.6 ± 8.2	84.0 ± 33.0	126
C	11.26	0.670 ± 0.071	0.683 ± 0.040	0.703 ± 0.037	0.670 ± 0.086	0.489
N	14.53	0.069 ± 0.038	0.111 ± 0.022	0.116 ± 0.021	0.088 ± 0.035	0.123
0	13.62	$= 1 \pm 0$	$\equiv 1 \pm 0$	$\equiv 1 \pm 0$	$\equiv 1 \pm 0$	= 1
Ne	21.56	0.091 ± 0.025	0.082 ± 0.013	0.084 ± 0.013	0.104 ± 0.027	0.178
Mg	7.65	0.147 ± 0.045	0.105 ± 0.025	0.108 ± 0.022	0.143 ± 0.055	0.0560
Si	8.15	0.167 ± 0.047	0.115 ± 0.023	0.102 ± 0.023	0.132 ± 0.042	0.0525
S	10.36	0.049 ± 0.016	0.056 ± 0.013	0.051 ± 0.014	0.051 ± 0.021	0.0316
Fe	7.87	0.120 ± 0.039	0.092 ± 0.017	0.081 ± 0.014	0.106 ± 0.044	0.0468

^aThe numbers denote averages of daily values with their 1-σ variability. Photospheric (Phot.) values are from *Grevesse and Sauval* [1998]. SWICS, Solar Wind Ion Composition Spectrometer; FIP, first ionization potential.

Measuring lons in the Heliosphere

- Solar wind ions can be separated from non-solar ions via the following criteria
 - Charge states: PUIs are mostly singly charged
 - Once ionized (e.g, photoionization, charge exchange, electron impact), ions are quickly swept out via solar wind
 - Spatial distribution
 - Interstellar ion density depends on angle between spacecraft and interstellar flow direction
 - Density of solar wind ions falls off with distance from Sun
 - Velocity Distributions
 - Shown in previous slide
- PUIs discovered so far include
 - H+, 4He+, 3He+, 4He++, N+, C+, O+, and Ne+,Mg+,Si+

Transport of IS material into the Heliosphere

- Interstellar neutrals from Local Interstellar Cloud (LIC) swept into the heliosphere at ~26 km/s by motion of Sun
- H, O, N are filtered in the 100 200AU region beyond the heliopause (reduces density)
- Heliospheric magnetic field and termination shock deflects interstellar ions, only neutrals make it in
- Drag reduces the speed of atomic hydrogen by ~6km/s
- He, Ne penetrate deeper into the heliosphere due to higher ionization potential
- Both H and He are focused downsteam of the Sun due to gravity (H, He focusing cones)

Heliospheric Pickup Ions

- PUIs carry information regarding sources and dynamics of interaction processes in the solar wind
- Significant findings include
 - Established the elemental abundance in the LIC
 - Placed Limits on the magnetic field in the LIC
 - Allowed Inferences of the ³He/⁴He ratio
 - Placed limits on the propagation properties of lowrigidity ions in solar wind
 - Discovery of a new population of PUIs
 - Observed cometary material
 - Observation of helium, hydrogen focusing cones

 Can determine abundances without ambiguity from phase space density measurements (Gloeckler et al., 2001)

Termina	tion Shock		LIC	Solar			
			Density (cr	System			
Isotope	Ratio	Density (cm ⁻³)	Atoms	Ions	Total	Ratio	Abundance Ratio
1 H	7.5	0.115±0.015	0.2	0.04	0.24	10	10
⁴ He	1	0.0153 ± 0.0020	0.0153	0.009	0.024	1	1
³ He	2.5×10^{-4}	$(3.8\pm1.0)\times10^{-6}$	3.8×10^{-6}	2.2×10 ⁻⁶	6.0×10^{-6}	2.5×10 ⁻⁴	-
^{14}N	0.6×10^{-3}	$(9.2\pm3.0)\times10^{-6}$	1.1 ×10 ⁻⁵	2.3×10 ⁻⁶	1.3×10 ⁻⁵	0.54×10^{-3}	1.12×10 ⁻³
¹⁶ O	4.5×10^{-3}	$(6.9\pm1.7)\times10^{-5}$	9.6×10^{-5}	2.1×10 ⁻⁵	1.2×10 ⁻⁴	5×10 ⁻³	8.51×10^{-3}
²⁰ Ne	1.0×10^{-3}	$(1.5\pm0.5)\times10^{-5}$	1.5×10 ⁻⁵	1.5×10 ⁻⁵	3.0×10^{-5}	1.25×10 ⁻³	1.23×10 ⁻³

- 40% of LIC H is excluded from heliosphere
- 90% of LIC O penetrates in to the heliosphere
- Solar System Abundance for Ne is not well established

Placed Limits on the magnetic field in the LIC

- Gloeckler et al. (1997) estimated LIC magnetic field via pressure balance
 - Bow shock at outer boundary of "filtration region"
 - Magnetic field is likely parallel to TS (Frish 1995)
 - TS at R > 80 AU
 - Assumed LIC density is 0.2 cm⁻³
 - $-V_{H} \sim 26 \text{ km/s}$
- Estimated value of magnetic field in LIC
 - $-1.2 \mu G > B_{ISM} < 4.3 \mu G$ (close to observed value)

- Only measurements of ³He/⁴He in LIC from SWICS (high sensitivity)
- Places a new lower limit on missing matter in the universe (Gloeckler and Geiss, 1996, 1998a)
- ³He production from stars less than predicted by some stellar evolution models
- ³He/⁴He ratio altered in solar system by nuclear burning making solar system sources inaccurate

- PUIs have large mean free paths (MFPs)
- Presence of large number of PUIs below solar wind peak indicates that there is a large inward anisotropy
- Little pitch angle scattering of low rigidity PUIs occurs
- Turbulence in the heliosphere should yield smaller MFPs
- Reasons for this discrepancy could include
 - Pitch angle scattering suppressed at 90°
 - Weak pitch angle scattering at all angles

Discovery of a new population of PUIs

- Inside 1 AU, outgassing and ionization of interstellar grains, interplanetary grains, small comets, and grain collisions contribute to extended source
- Solar wind absorbed by dust and released again as slow neutrals or ions (H+,C+,O+, N+, Ne+)
- This is the "inner source"
- PUIs injected within 10s of R_solar
- PUIs undergo adiabatic focusing
- Ions also include Mg+, Si+, (CH+?, H₂O+?)
- C+/O+ ~ 1

- Comets are point sources of pickup ions
- As comet moves closer to the Sun, neutral gas is emitted at an increasing rate
- Produces tails in pickup ion populations extending to many AU
- Provide direct sampling of cometary composition

Hydrogen and Helium Focusing Cones

 He I that survives the ionization process is focused by the Sun's gravitational field on the downwind side ⇒ He cone

Hydrogen and Helium Focusing Cones

- SWICS was originally designed to sample solar wind ions
- Ion mass spectrometers like SWICS on Ulysses and ACE also allow studies of PUIs
 - Direct sampling of the composition of interstellar gas and dust, interplanetary dust, cometary tails, etc.
 - Examination of dynamic processes involved in acceleration and propagation of PUIs.
- SWICS observations have yielded a wide variety of discoveries and insights into local interstellar and interplanetary space

- Gloeckler, G., and J. Geiss, (1998), *Space Science Reviews*, 86, 127 (and references therein)
- Gloeckler, G. et al., (1998) Space Science Reviews, 86, 497 (and references therein)
- Kallenbach, R., et al., (2000) *Astrophysics and. Space Science, 274,* 97 (and references therein)
- Schwadron, N. A. and G. Gloeckler, (2007), Space Science Reviews, 130, 283 (and references therein)